Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Plant Environ Interact ; 5(2): e10139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560414

RESUMO

Ferns are known to have a lower incidence of mycorrhization than angiosperms. It has been suggested that this results from carbon being more limiting to fern growth than nutrient availability, but this assertion has not been tested yet. In the present study, we took advantage of a fertilization experiment with nitrogen and phosphorus on cloud forest plots of the Ecuadorean Andes for 15 years. A previous analysis revealed changes in the abundances of fern species in the fertilized plots compared to the control plots and hypothesized that this might be related to the responses of the mycorrhizal relationships to nutrient availability. We revisited the plots to assess the root-associated fungal communities of two epiphytic and two terrestrial fern species that showed shifts in abundance. We sampled and analyzed the roots of 125 individuals following a metabarcoding approach. We recovered 1382 fungal ASVs, with a dominance of members of Tremellales (Basidiomycota) and Heliotales (Ascomycota). The fungal diversity was highly partitioned with little overlap between individuals. We found marked differences between terrestrial and epiphytic species, with the latter fundamentally missing arbuscular mycorrhizal fungi (AMF). We found no effect of fertilization on the diversity or relative abundance of the fungal assemblages. Still, we observed a direct impact of phosphorus fertilization on its concentration in the fern leaves. We conclude that fern-fungi relationships in the study site are not restricted by nutrient availability and suggest the existence of little specificity on the fungal partners relative to the host fern species.

2.
BMC Plant Biol ; 24(1): 103, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331718

RESUMO

BACKGROUND: The establishment of mycorrhizal relationships between a fungus and a plant typically enhances nutrient and water uptake for the latter while securing a carbon source for the fungus. However, under a particular set of environmental conditions, such as low availability of light and abundant nutrients in the soil, the resources invested in the maintenance of the fungi surpass the benefits obtained by the host. In those cases, facultative mycorrhizal plants are capable of surviving without symbiosis. Facultative mycorrhization in ferns has been overlooked until now. The present study measured the response of Struthiopteris spicant L. Weiss, and its root-associated fungi to different levels of light and nutrient availability in terms of growth, mycorrhizal presence, and leaf nutrient content. This fern species exhibits a great tolerance to variable light, nutrient, and pH conditions, and it has been found with and without mycorrhizae. We conducted a greenhouse experiment with 80 specimens of S. spicant and three factors (Light, Phosphorus, and Nitrogen) resulting in eight treatments. RESULTS: We found a significant influence of the factor light on fungal community composition, plant biomass, and nutrient accumulation. Departing from a lack of colonization at the initial stage, plants showed a remarkable increment of more than 80% in the arbuscular mycorrhizal fungi (AMF) richness and abundance in their roots when grown under high light conditions, compared with the ones in low light. We also observed an upward trend of C:P and C:N ratios and the above- and belowground biomass production when AMF abundance increased. Furthermore, the compositional analysis of the whole fungal communities associated with S. spicant roots revealed clear differences among low-light and high-light treatments. CONCLUSIONS: This study is the first to investigate the importance of light and nutrient availability in determining fern-AMF relationships. We confirmed that Struthiopteris spicant is a facultative mycorrhizal plant. The composition and diversity of AMF found in the roots of this fern are strongly influenced by light and less by nutrient conditions. Our study shows that ferns respond very sensitively to changes in environmental factors, leading to shifts in the associated mycorrhizal communities.


Assuntos
Gleiquênias , Micorrizas , Raízes de Plantas , Micorrizas/fisiologia , Simbiose , Solo/química , Microbiologia do Solo
3.
Nat Commun ; 15(1): 1079, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316752

RESUMO

The tendency of species to retain ancestral ecological distributions (phylogenetic niche conservatism) is thought to influence which species from a species pool can persist in a particular environment. Thus, investigating the relationships between measures of phylogenetic structure and environmental variables at a global scale can help understand the variation in species richness and phylogenetic structure in biological assemblages across the world. Here, we analyze a comprehensive data set including 341,846 species in 391 angiosperm floras worldwide to explore the relationships between measures of phylogenetic structure and environmental variables for angiosperms in regional floras across the world and for each of individual continental (biogeographic) regions. We find that the global phylogenetic structure of angiosperms shows clear and meaningful relationships with environmental factors. Current climatic variables have the highest predictive power, especially on phylogenetic metrics reflecting recent evolutionary relationships that are also related to current environmental heterogeneity, presumably because this favors plant speciation in various ways. We also find evidence that past climatic conditions, and particularly refugial conditions, play an important role in determining the phylogenetic structure of regional floras. The relationships between environmental conditions and phylogenetic metrics differ between continents, reflecting the different evolutionary histories of their floras.


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Evolução Biológica , Plantas , Ecossistema
4.
Mol Phylogenet Evol ; 190: 107954, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898295

RESUMO

Species are seen as the fundamental unit of biotic diversity, and thus their delimitation is crucial for defining measures for diversity assessments and studying evolution. Differences between species have traditionally been associated with variation in morphology. And yet, the discovery of cryptic diversity suggests that the evolution of distinct lineages does not necessarily involve morphological differences. Here, we analyze 1,684,987 variant sites and over 4,000 genes for more than 400 samples to show how a tropical montane plant lineage (Geonoma undata species complex) is composed of numerous unrecognized genetic groups that are not morphologically distinct. We find that 11 to 14 clades do not correspond to the three currently recognized species. Most clades are genetically different and geographic distance and topography are the most important factors determining this genetic divergence. The genetic structure of this lineage does not match its morphological variation. Instead, this species complex constitutes the first example of a hyper-cryptic plant radiation in tropical mountains.


Assuntos
Biodiversidade , Deriva Genética , Filogenia , Especiação Genética
5.
Front Cardiovasc Med ; 10: 1294218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054099

RESUMO

Introduction: Elevated red cell distribution width (RDW) has been associated with a range of health outcomes. This study aims to examine prognostic and etiological roles of RDW levels, both phenotypic and genetic predisposition, in predicting cardiovascular outcomes, diabetes, chronic kidney disease (CKD) and mortality. Methods: We studied 27,141 middle-aged adults from the Malmö Diet and Cancer study (MDCS) with a mean follow up of 21 years. RDW was measured with a hematology analyzer on whole blood samples. Polygenic scores for RDW (PGS-RDW) were constructed for each participant using genetic data in MDCS and published summary statistics from genome-wide association study of RDW (n = 408,112). Cox proportional hazards regression was used to assess associations between RDW, PGS-RDW and cardiovascular outcomes, diabetes, CKD and mortality, respectively. Results: PGS-RDW was significantly associated with RDW (Pearson's correlation coefficient = 0.133, p < 0.001). RDW was significantly associated with incidence of stroke (hazard ratio (HR) per 1 standard deviation = 1.06, 95% confidence interval (CI): 1.02-1.10, p = 0.003), atrial fibrillation (HR = 1.09, 95% CI: 1.06-1.12, p < 0.001), heart failure (HR = 1.13, 95% CI: 1.08-1.19, p < 0.001), venous thromboembolism (HR = 1.21, 95% CI: 1.15-1.28, p < 0.001), diabetes (HR = 0.87, 95% CI: 0.84-0.90, p < 0.001), CKD (HR = 1.08, 95% CI: 1.03-1.13, p = 0.004) and all-cause mortality (HR = 1.18, 95% CI: 1.16-1.20, p < 0.001). However, PGS-RDW was significantly associated with incidence of diabetes (HR = 0.96, 95% CI: 0.94-0.99, p = 0.01), but not with any other tested outcomes. Discussion: RDW is associated with mortality and incidence of cardiovascular diseases, but a significant association between genetically determined RDW and incident cardiovascular diseases were not observed. However, both RDW and PGS-RDW were inversely associated with incidence of diabetes, suggesting a putative causal relationship. The relationship with incidence of diabetes needs to be further studied.

6.
Sci Adv ; 9(46): eadj1022, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967173

RESUMO

Although originating from a common Gondwanan flora, the diversity and composition of the floras of Africa and South America have greatly diverged since continental breakup of Africa from South America now having much higher plant species richness. However, the phylogenetic diversity of the floras and what this tells us about their evolution remained unexplored. We show that for a given species richness and considering land surface area, topography, and present-day climate, angiosperm phylogenetic diversity in South America is higher than in Africa. This relationship holds regardless of whether all climatically matched areas or only matched areas in tropical climates are considered. Phylogenetic diversity is high relative to species richness in refugial areas in Africa and in northwestern South America, once the gateway for immigration from the north. While species richness is strongly influenced by massive plant radiations in South America, we detect a pervasive influence of historical processes on the phylogenetic diversity of both the South American and African floras.


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , América do Sul , África , Clima Tropical , Biodiversidade
8.
PeerJ ; 11: e15500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361043

RESUMO

Understanding the mechanisms driving community assembly has been a major focus of ecological research for nearly a century, yet little is known about these mechanisms in commensal communities, particularly with respect to their historical/evolutionary components. Here, we use a large-scale dataset of 4,440 vascular plant species to explore the relationship between the evolutionary distinctiveness (ED) (as measured by the 'species evolutionary history' (SEH)) of host species and the phylogenetic diversity (PD) of their associated epiphyte species. Although there was considerable variation across hosts and their associated epiphyte species, they were largely unrelated to host SEH. Our results mostly support the idea that the determinants of epiphyte colonization success might involve host characteristics that are unrelated to host SEH (e.g., architectural differences between hosts). While determinants of PD of epiphyte assemblages are poorly known, they do not appear to be related to the evolutionary history of host species. Instead, they might be better explained by neutral processes of colonization and extinction. However, the high level of phylogenetic signal in epiphyte PD (independent of SEH) suggests it might still be influenced by yet unrecognized evolutionary determinants. This study highlights how little is still known about the phylogenetic determinants of epiphyte communities.


Assuntos
Evolução Biológica , Traqueófitas , Filogenia , Simbiose , Especificidade de Hospedeiro
9.
Appl Plant Sci ; 11(3): e11523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342167

RESUMO

Premise: Detailed studies of the fungi associated with lycophytes and ferns provide crucial insights into the early evolution of land plants. However, most investigations to date have assessed fern-fungus interactions based only on visual root inspection. In the present research, we establish and evaluate a metabarcoding protocol to analyze the fungal communities associated with fern and lycophyte roots. Methods: We used two primer pairs focused on the ITS rRNA region to screen the general fungal communities, and the 18S rRNA to target Glomeromycota fungi (i.e., arbuscular mycorrhizal fungi). To test these approaches, we collected and processed roots from 12 phylogenetically distant fern and lycophyte species. Results: We found marked compositional differences between the ITS and 18S data sets. While the ITS data set demonstrated the dominance of orders Glomerales (phylum Glomeromycota), Pleosporales, and Helotiales (both in phylum Ascomycota), the 18S data set revealed the greatest diversity of Glomeromycota. Non-metric multidimensional scaling (NMDS) ordination suggested an important geographical effect in sample similarities. Discussion: The ITS-based approach is a reliable and effective method to analyze the fungal communities associated with fern and lycophyte roots. The 18S approach is more appropriate for studies focused on the detailed screening of arbuscular mycorrhizal fungi.


Premisa: El estudio de los hongos asociados a licofitas y helechos proporciona información crucial sobre la evolución temprana de las plantas terrestres. Sin embargo, hasta el momento, la mayoría de las investigaciones ha evaluado las interacciones helecho­hongo basándose solamente en la observación directa de las raíces. En la presente investigación, establecemos y evaluamos un protocolo de metabarcoding enfocado en dos regiones de ADN para analizar las comunidades fúngicas asociadas a las raíces de helechos y licofitas. Métodos: Utilizamos dos pares de primer orientados hacia la región ITS ARNr, para la detección de las comunidades fúngicas generales, y la región 18S ARNr, para captar hongos pertenecientes al phylum Glomeromycota (i.e., hongos micorrícicos arbusculares). Para evaluar estos procedimientos, nosotros recolectamos y procesamos raíces de 12 especies de helechos y licofitas distantes desde el punto de vista filogenético. Resultados: Se observaron claras diferencias de composición entre los sets de datos ITS y 18S: mientras el primero demostró un predominio de los órdenes Glomerales (phylum Glomeromycota), Pleosporales y Helotiales (ambos en phylum Ascomycota), el set 18S reveló la mayor diversidad de hongos micorrizógenos arbusculares. Ninguno de los marcadores moleculares utilizados detectó miembros del phylum Mucoromycota en las muestras. El escalamiento multidimensional no métrico (NMDS) sugirió un papel importante de la región geográfica de origen en la determinación de las similitudes entre muestras. Discusión: El método basado en la región ITS es consistente, replicable y eficaz para analizar las comunidades fúngicas asociadas con raíces de helechos y licofitos. El enfoque 18S es más apropiado para estudios centrados en la detección de los hongos micorrizógenos arbusculares.

10.
Nat Genet ; 55(7): 1138-1148, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37308787

RESUMO

Human genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the ß2 subunit of the α4ß2 nicotine acetylcholine receptor. Rare predicted loss-of-function and likely deleterious missense variants in CHRNB2 in aggregate were associated with a 35% decreased odds for smoking heavily (odds ratio (OR) = 0.65, confidence interval (CI) = 0.56-0.76, P = 1.9 × 10-8). An independent common variant association in the protective direction ( rs2072659 ; OR = 0.96; CI = 0.94-0.98; P = 5.3 × 10-6) was also evident, suggesting an allelic series. Our findings in humans align with decades-old experimental observations in mice that ß2 loss abolishes nicotine-mediated neuronal responses and attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting CHRNB2 in the brain for the treatment of nicotine addiction.


Assuntos
Nicotina , Tabagismo , Humanos , Animais , Camundongos , Fumar/genética , Tabagismo/genética , Fenótipo , Razão de Chances
11.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37214792

RESUMO

Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.

12.
Mol Phylogenet Evol ; 184: 107782, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37044191

RESUMO

The pantropical fern family Gleicheniaceae comprises approximately 157 species. Seven genera are currently recognized in the family, although their monophyly is still uncertain due to low sampling in phylogenetic studies. We examined the monophyly of the genera through extended sampling, using the first phylogenomic inference of the family including data from both nuclear and plastid genomes. Seventy-six samples were sequenced (70 Gleicheniaceae species and six outgroups) using high throughput sequencing, including all seven currently recognized genera. Plastid and nuclear data were recovered and assembled; the nuclear data was phased to reduce paralogy as well as hybrid noise in the final recovered topology. Maximum likelihood trees were built for each locus, and a concatenated dataset was built for both datasets. A species tree based on a multispecies coalescent model was generated, and divergence time analyses performed. We here present the first genomic phylogenetic inferences concerning Gleicheniaceae, confirming the monophyly of most genera except Sticherus, which we recovered as paraphyletic. Although most of the extant genera of Gleicheniaceae originated during the Mesozoic, several genera show Neogene and even Quaternary diversifications, and our results suggest that reticulation and polyploidy may have played significant roles during this diversification. However, some genera, such as Rouxopteris and Stromatopteris, appear to represent evolutionary relicts.


Assuntos
Gleiquênias , Filogenia , Evolução Biológica , Genômica , Plastídeos/genética
13.
Cladistics ; 39(4): 273-292, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37084123

RESUMO

The pantropical fern genus Didymochlaena (Didymochlaenaceae) has long been considered to contain one species only. Recent studies have resolved this genus/family as either sister to the rest of eupolypods I or as the second branching lineage of eupolypods I, and have shown that this genus is not monospecific, but the exact species diversity is unknown. In this study, a new phylogeny is reconstructed based on an expanded taxon sampling and six molecular markers. Our major results include: (i) Didymochlaena is moderately or weakly supported as sister to the rest of eupolypods I, highlighting the difficulty in resolving the relationships of this important fern lineage in the polypods; (ii) species in Didymochlaena are resolved into a New World clade and an Old World clade, and the latter further into an African clade and an Asian-Pacific clade; (iii) an unusual tripling of molecular, morphological and geographical differentiation in Didymochlaena is detected, suggesting single vicariance or dispersal events in individual regions and no evidence for reversals at all, followed by allopatric speciation at more or less homogeneous rates; (iv) evolution of 18 morphological characters is inferred and two morphological synapomorphies defining the family are recognized-the elliptical sori and fewer than 10 sori per pinnule, the latter never having been suggested before; (v) based on morphological and molecular variation, 22 species in the genus are recognized contrasting with earlier estimates of between one and a few; and (vi) our biogeographical analysis suggests an origin for Didymochlaena in the latest Jurassic-earliest Cretaceous and the initial diversification of the extant lineages in the Miocene-all but one species diverged from their sisters within the last 27 Myr, in most cases associated with allopatric speciation owing to geologic and climatic events, or dispersal.


Assuntos
Gleiquênias , Magnoliopsida , Gleiquênias/genética , Evolução Molecular , Filogenia , Geografia
14.
Sci Rep ; 13(1): 4584, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941286

RESUMO

Soils contain significantly more carbon than the atmosphere, hence we should understand how best to stabilize it. Unfortunately, the role of human interventions on soil organic carbon (SOC) persistence in the Anthropocene remains vague, lacking adequate sites that allow unbiased direct comparisons of pristine and human influenced soils. Here we present data from a unique study system in the High Andes that guarantees pristineness of the reference sites by physical inaccessibility through vertical cliffs. By comparing the isotopic signatures of SOC, mineral related carbon stabilization, and soil nutrient status across grazed versus pristine soils, we provide counterintuitive evidence that thousands of years of pastoralism increased soil C persistence. Mineral associated organic carbon (MAOC) was significantly higher in pastures. Land use increased poorly crystalline minerals (PCM's), of which aluminum correlated best with MAOC. On the other hand, human's acceleration of weathering led to acidification and higher losses of cations. This highlights a dilemma of lower soil quality but higher persistence of SOC due to millennia of pastoralism. The dynamics of soil genesis in the Anthropocene needs better understanding, but if human-induced weathering proves generally to promote soil carbon persistence it will need to be included in climate-soil feedback projections.

15.
New Phytol ; 239(1): 415-428, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36994609

RESUMO

Knowledge of relationships between phylogenetic structure of a biological assemblage and ecological factors that drive the variation of phylogenetic structure among regions is crucial for understanding the causes of variation in taxonomic composition and richness among regions, but this knowledge is lacking for the global flora of ferns. Here, we fill this critical knowledge gap. We divided the globe into 392 geographic units on land, collated species lists of ferns for each geographic unit, and used different phylogenetic metrics (tip- vs basal-weighted) reflecting different evolutionary depths to quantify phylogenetic structure. We then related taxonomic and phylogenetic structure metrics to six climatic variables for ferns as a whole and for two groups of ferns (old clades vs polypods) reflecting different evolutionary histories across the globe and within each continental region. We found that when old clades and polypods were considered separately, temperature-related variables explained more variation in these metrics than did precipitation-related variables in both groups. When analyses were conducted for continental regions separately, this pattern holds in most cases. Climate extremes have a stronger relationship with phylogenetic structure of ferns than does climate seasonality. Climatic variables explained more variation in phylogenetic structure at deeper evolutionary depths.


Assuntos
Clima , Gleiquênias , Evolução Biológica , Gleiquênias/genética , Filogenia , Temperatura
16.
Ecol Evol ; 13(3): e9862, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36969936

RESUMO

The study of elevational gradients allows to draw conclusions on the factors and mechanisms determining patterns in species richness distribution. Several earlier studies investigated liverwort diversity on single or few elevational transects. However, a comprehensive survey of the elevational distribution patterns of liverwort richness and their underlying factors is lacking so far. This study's purpose was to fill this gap by compiling an extensive data set of liverwort elevational patterns encompassing a broad diversity of mountains and mountain ranges around the world. Using polynomial regression analyses, we found a prevalence of hump-shaped richness patterns (19 of 25 gradients), where liverwort species richness peaked at mid-elevation and decreased towards both ends of the gradient. Against our expectation and unlike in other plant groups, in liverworts, this pattern also applies to elevational gradients at mid-latitudes in temperate climates. Indeed, relative elevation, calculated as the percentage of the elevational range potentially inhabited by liverworts, was the most powerful predictor for the distribution of liverwort species richness. We conclude from these results that the admixture of low- and high-elevation liverwort floras, in combination with steep ecological gradients, leads to a mid-elevation floristic turnover shaping elevational patterns of liverwort diversity. Our analyses further detected significant effects of climatic variables (temperature of the warmest month, potential evapotranspiration, and precipitation of the warmest month) in explaining elevational liverwort richness patterns. This indicates that montane liverwort diversity is restricted by high temperatures and subsequent low water availability especially towards lower elevations, which presumably will lead to serious effects by temperature shifts associated with global warming.

18.
Macromol Rapid Commun ; 44(16): e2200864, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36809684

RESUMO

The stiffness and toughness of conventional hydrogels decrease with increasing degree of swelling. This behavior makes the stiffness-toughness compromise inherent to hydrogels even more limiting for fully swollen ones, especially for load-bearing applications. The stiffness-toughness compromise of hydrogels can be addressed by reinforcing them with hydrogel microparticles, microgels, which introduce the double network (DN) toughening effect into hydrogels. However, to what extent this toughening effect is maintained in fully swollen microgel-reinforced hydrogels (MRHs) is unknown. Herein, it is demonstrated that the initial volume fraction of microgels contained in MRHs determines their connectivity, which is closely yet nonlinearly related to the stiffness of fully swollen MRHs. Remarkably, if MRHs are reinforced with a high volume fraction of microgels, they stiffen upon swelling. By contrast, the fracture toughness linearly increases with the effective volume fraction of microgels present in the MRHs regardless of their degree of swelling. These findings provide a universal design rule for the fabrication of tough granular hydrogels that stiffen upon swelling and hence, open up new fields of use of these hydrogels.


Assuntos
Hidrogéis , Microgéis
19.
Plant Physiol ; 191(3): 1634-1647, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36691320

RESUMO

Circadian regulation plays a vital role in optimizing plant responses to the environment. However, while circadian regulation has been extensively studied in angiosperms, very little is known for lycophytes and ferns, leaving a gap in our understanding of the evolution of circadian rhythms across the plant kingdom. Here, we investigated circadian regulation in gas exchange through stomatal conductance and photosynthetic efficiency in a phylogenetically broad panel of 21 species of lycophytes and ferns over a 46 h period under constant light and a selected few under more natural conditions with day-night cycles. No rhythm was detected under constant light for either lycophytes or ferns, except for two semi-aquatic species of the family Marsileaceae (Marsilea azorica and Regnellidium diphyllum), which showed rhythms in stomatal conductance. Furthermore, these results indicated the presence of a light-driven stomatal control for ferns and lycophytes, with a possible passive fine-tuning through leaf water status adjustments. These findings support previous evidence for the fundamentally different regulation of gas exchange in lycophytes and ferns compared to angiosperms, and they suggest the presence of alternative stomatal regulations in Marsileaceae, an aquatic family already well known for numerous other distinctive physiological traits. Overall, our study provides evidence for heterogeneous circadian regulation across plant lineages, highlighting the importance of broad taxonomic scope in comparative plant physiology studies.


Assuntos
Gleiquênias , Magnoliopsida , Marsileaceae , Gleiquênias/fisiologia , Estômatos de Plantas/fisiologia , Folhas de Planta/genética , Plantas , Magnoliopsida/fisiologia , Ritmo Circadiano
20.
J Surg Educ ; 80(3): 338-351, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36494299

RESUMO

OBJECTIVE: Medical students pursuing orthopedic surgery residency build foundational knowledge during clinical rotations. Most clinical rotations, home and away, were paused during the COVID-19 pandemic. Given the lack of structured fourth-year medical student (MS4) education for basic orthopedics, educators developed the Ortho Acting-Intern Coordinated Clinical Education and Surgical Skills (OrthoACCESS) curriculum in 2019. This study demonstrates the accessibility and usability of a MS4 virtual orthopedic curriculum and examines the curriculum's role in increasing learner familiarity with basic orthopedic topics in 2020. DESIGN: OrthoACCESS faculty presented weekly lectures from July to October 2020 using Zoom Webinar. Website content included recorded webinars, external resources, and skills videos. Registrants were anonymously surveyed after each webinar characterizing the knowledge and utility of individual lectures. After the webinar series, registrants were emailed an anonymous post-curriculum survey characterizing their experience using the OrthoACCESS curriculum. RESULTS: OrthoACCESS had 1062 registrants, with 59% (624/1,062) MS4s. 4528 users accessed the OrthoACCESS website from 66 countries. The 15 lectures were viewed 3743 times, 1553 live views and 2190 asynchronous views. 444 postwebinar surveys were completed. Weekly response rates ranged from 18% to 45%. Respondents felt more knowledgeable and more able to apply their knowledge after viewing each lecture (p < 0.001), and found the webinars to be well-organized, well-paced, enthusiastically taught, and level-appropriate. 122/976 (13%) students and 45/291 (15%) faculty completed the postcurriculum survey. Faculty reported that OrthoACCESS was "quite useful" (4 [3-5]) for providing knowledge for an incoming orthopaedic intern. Faculty and students would recommend OrthoACCESS to future learners (5 [4-5]). CONCLUSIONS: OrthoACCESS delivered foundational musculoskeletal instruction during a period of increased need. In its initial iteration, this virtual curriculum demonstrated high utilization in the United States and internationally and improved participants' self-reported topical knowledge and ability to apply it clinically.


Assuntos
COVID-19 , Internato e Residência , Procedimentos Ortopédicos , Ortopedia , Estudantes de Medicina , Humanos , Estados Unidos , Ortopedia/educação , Pandemias , COVID-19/epidemiologia , Currículo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...